Using Machine Learning Techniques for Performance Prediction on Multi-Cores
نویسندگان
چکیده
Sharing of resources by the cores of multi-core processors brings performance issues for the system. Majority of the shared resources belong to memory hierarchy sub-system of the processors such as last level caches, prefetchers and memory buses. Programs co-running on the cores of a multi-core processor may interfere with each other due to usage of such shared resources. Such interference causes co-running programs to suffer with performance degradation. Previous research works include efforts to characterize and classify the memory behaviors of programs to predict the performance. Such knowledge could be useful to create workloads to perform performance studies on multi-core processors. It could also be utilized to form policies at system level to mitigate the interference between co-running programs due to use of shared resources. In this work, machine learning techniques are used to predict the performance on multi-core processors. The main contribution of the study is enumeration of solorun program attributes, which can be used to predict concurrent-run performance despite change in the number of co-running programs sharing the resources. The concurrent-run involves the interference between co-running programs due to use of shared resources.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملDevelopment of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملModeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques
In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJGHPC
دوره 3 شماره
صفحات -
تاریخ انتشار 2011